Search results for "Electrostatic model"

showing 4 items of 4 documents

A Mononuclear Uranium(IV) Single-Molecule Magnet with an Azobenzene Radical Ligand

2015

A tetravalent uranium compound with a radical azobenzene ligand, namely, [{(SiMe2NPh)3‐tacn}UIV(η2‐N2Ph2.)] (2), was obtained by one‐electron reduction of azobenzene by the trivalent uranium compound [UIII{(SiMe2NPh)3‐tacn}] (1). Compound 2 was characterized by single‐crystal X‐ray diffraction and 1H NMR, IR, and UV/Vis/NIR spectroscopy. The magnetic properties of 2 and precursor 1 were studied by static magnetization and ac susceptibility measurements, which for the former revealed single‐molecule magnet behaviour for the first time in a mononuclear UIV compound, whereas trivalent uranium compound 1 does not exhibit slow relaxation of the magnetization at low temperatures. A first approxim…

DiffractionUNESCO::QUÍMICARadicalOrganic Chemistrychemistry.chemical_elementGeneral ChemistryUranium7. Clean energy:QUÍMICA [UNESCO]CatalysisCrystallographychemistry.chemical_compoundMagnetizationchemistryAzobenzeneMagnetOrganic chemistrySingle-molecule magnetElectrostatic model
researchProduct

Strong N−X⋅⋅⋅O−N Halogen Bonds: A Comprehensive Study on N‐Halosaccharin Pyridine N ‐Oxide Complexes

2019

A study of the strong N-X⋅⋅⋅- O-N+ (X=I, Br) halogen bonding interactions reports 2×27 donor×acceptor complexes of N-halosaccharins and pyridine N-oxides (PyNO). DFT calculations were used to investigate the X⋅⋅⋅O halogen bond (XB) interaction energies in 54 complexes. A simplified computationally fast electrostatic model was developed for predicting the X⋅⋅⋅O XBs. The XB interaction energies vary from -47.5 to -120.3 kJ mol-1 ; the strongest N-I⋅⋅⋅- O-N+ XBs approaching those of 3-center-4-electron [N-I-N]+ halogen-bonded systems (ca. 160 kJ mol-1 ). 1 H NMR association constants (KXB ) determined in CDCl3 and [D6 ]acetone vary from 2.0×100 to >108  m-1 and correlate well with the calculat…

Halogen bond010405 organic chemistryPyridine-N-oxideGeneral MedicineGeneral ChemistryCrystal structure010402 general chemistry01 natural sciencesCatalysis0104 chemical sciencesCrystallographychemistry.chemical_compoundchemistryHalogenPyridineAcetoneElectrostatic modelAngewandte Chemie International Edition
researchProduct

Electrostatic model and NMR results for EFG tensors in tetragonal BaTiO3

1990

Abstract We present 47,49Ti and 135,137Ba NMR second-order quadrupolar rotation patterns in a tetragonal single domain crystal of BaTiO3. These data will be analysed in terms of a ionic polarizable point multipole model.

Materials scienceIonic bondingCondensed Matter PhysicsMolecular physicsElectronic Optical and Magnetic MaterialsCrystalCondensed Matter::Materials ScienceTetragonal crystal systemNuclear magnetic resonancePolarizabilityPhysics::Atomic and Molecular ClustersCondensed Matter::Strongly Correlated ElectronsPhysics::Atomic PhysicsSingle domainMultipole expansionRotation (mathematics)Electrostatic modelFerroelectrics
researchProduct

Perspective: Polarizable continuum models for quantum-mechanical descriptions

2016

Polarizable continuum solvation models are nowadays the most popular approach to describe solvent effects in the context of quantum mechanical calculations. Unexpectedly, despite their widespread use in all branches of quantum chemistry and beyond, important aspects of both their theoretical formulation and numerical implementation are still not completely understood. In particular, in this perspective we focus on the numerical issues of their implementation when applied to large systems and on the theoretical framework needed to treat time dependent problems and excited states or to deal with electronic correlation. Possible extensions beyond a purely electrostatic model and generalization…

Physics010304 chemical physicsElectronic correlationContinuum (measurement)Implicit solvationSolvationGeneral Physics and Astronomy010402 general chemistry01 natural sciences0104 chemical sciencesPolarizability0103 physical sciencesStatistical physicsPhysical and Theoretical ChemistryQuantumElectrostatic model
researchProduct